Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Food Microbiol ; 113: 104251, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2254119

ABSTRACT

The viability of SARS-CoV-2 on food surfaces and its propagation through the food chain has been discussed by several stakeholders, as it may represent a serious public health problem, bringing new challenges to the food system. This work shows for the first time that edible films can be used against SARS-CoV-2. Sodium alginate-based films containing gallic acid, geraniol, and green tea extract were evaluated in terms of their antiviral activity against SARS-CoV-2. The results showed that all these films have strong in vitro antiviral activity against this virus. However, a higher concentration of the active compound (1.25%) is needed for the film containing gallic acid to achieve similar results to those obtained for lower concentrations of geraniol and green tea extract (0.313%). Furthermore, critical concentrations of the active compounds in the films were used to evaluate their stability during storage. Results showed that gallic acid-loaded films lose their activity from the second week of storage, while films with geraniol and green tea extract only show a drop in activity after four weeks. These results highlight the possibility of using edible films and coatings as antiviral materials on food surfaces or food contact materials, which may help to reduce the spreading of viruses through the food chain.


Subject(s)
COVID-19 , Edible Films , Humans , Alginates , Food Packaging/methods , SARS-CoV-2 , Antioxidants , Plant Extracts/pharmacology , Tea , Antiviral Agents/pharmacology , Gallic Acid/pharmacology
2.
PLoS One ; 18(2): e0278021, 2023.
Article in English | MEDLINE | ID: covidwho-2231364

ABSTRACT

Supervision over the suppliers of packaging as well as suppliers of raw materials for packaging production is important to ensure the quality and safety of meat products. The aim of this study was to verify the remote evaluation procedure of quality, processing and economic criteria in qualification of raw materials suppliers to the meat packaging foil producer during the Covid-19 pandemic. The evaluation was done remotely in terms of meeting some of the requirements of the quality management system (QMS) in conditions where regular audit could not be carried out. The survey was conducted in one of the biggest packaging foil producers in Greece via its supplier evaluation. The evaluation consisted of: 1/ economic criteria and 2/ quality and processing criteria. The highest and the lowest rated economic criteria were procedural compliance and price of raw materials. Among the quality and processing criteria, the highest score was given to warranties and claims policies and material quality, and the lowest one to lead time. The highest ratings obtained suppliers of raw materials directly involved in production, suppliers from Greece, the USA and Denmark, as well as suppliers to the R&D department. The results of the study showed that the quality of the raw materials directly used in the production of packaging foil was adequate. Therefore, their use ensure production of packaging foil and finally packaged meat products of adequate quality and safety. The presented procedure occurred to be useful for remote evaluation of quality, processing and economic criteria in qualification of suppliers during the Covid-19 pandemic. It may inspire other producers of food packaging materials to continuing supervision over their suppliers while regular methods of control are limited.


Subject(s)
COVID-19 , Meat Products , Humans , Greece , Pandemics , COVID-19/epidemiology , Meat , Food Packaging/methods
3.
Compr Rev Food Sci Food Saf ; 22(2): 1148-1183, 2023 03.
Article in English | MEDLINE | ID: covidwho-2223195

ABSTRACT

The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.


Subject(s)
COVID-19 , Food Packaging , Humans , Food Packaging/methods , Starch/chemistry , Pandemics , Plant Extracts/chemistry
4.
Food Chem ; 407: 135099, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2149733

ABSTRACT

With higher demands for food packaging and the development of nanotechnology, nanopackaging is becoming a research hotspot in the field of food packaging because of its superb preservation effect, and it can effectively resist oxidation and regulates energy metabolism to maintain the quality and prolong the shelf life of mushrooms. Furthermore, under the background of SARS-CoV-2 pandemic, nanomaterials could be a potential tool to prevent virus transmission because of their excellent antiviral activities. However, the investigation and application of nanopackaging are facing many challenges including costs, environmental pollution, poor in-depth genetic research for mechanisms and so on. This article reviews the preservation effect and mechanisms of nanopackaging on the quality of mushrooms and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.


Subject(s)
Agaricales , COVID-19 , Food Preservation , SARS-CoV-2 , Food Packaging
5.
Sci Total Environ ; 861: 160463, 2023 Feb 25.
Article in English | MEDLINE | ID: covidwho-2122794

ABSTRACT

COVID-19 pandemic has been the talk of the globe, as it swept across the world population, changing enumerable aspects. The pandemic affected all sectors directly or indirectly. The food sector took a direct hit. The food packaging sector rose to the occasion to serve and feed the pandemic affected, but there were interactions, reactions, and consequences that evolved through the course of the journey through the pandemic. The aim of this perspective is to address the importance of the food packaging industry (from the COVID-19 point of view) and to highlight the unpreparedness of the food packaging materials, for times as these. As the world has been asked to learn to live with Corona, improvisations are definitely necessary, the lapses in the system need to be rectified, and the entire packaging industry has to go through fortification to co-exist with Corona or confront something worse than Corona. This discussion is set out to understand the gravity of the actual situation, assimilating information available from the scattered shreds of reports. Food packaging materials were used, and plastic wastes were generated in bulks, single-use plastics for fear of contamination gained prominence, leading to an enormous turnover of wastes. Fear of Corona, sprayed overloads of sanitizers and disinfectants on food package material surfaces for surface sterilization. The food packages were tailored for food containment needs, never were they planned for sanitizer sprays. The consequences of these sanitization procedures are unprecedented, neglected and in the post-COVID-19 phase no action appears to have been taken. Corona took us by surprise this time, but next time atleast the food packaging industry needs to be fully equipped. Speculated consequences have been reviewed and plausible suggestions have been proposed. The need for extensive research focus in this direction in exploring the ground-reality has been highlighted.


Subject(s)
COVID-19 , Disinfectants , Humans , Food Packaging , COVID-19/epidemiology , Pandemics , Plastics
6.
J Hazard Mater ; 435: 128980, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1796501

ABSTRACT

The ingestion and accumulation of microplastics is a serious threat to the health and survival of humans and other organisms given the increasing use of daily-use plastic products, especially during the COVID-19 pandemic. However, whether direct microplastic contamination from plastic packaging is a threat to human health remains unclear. We analyzed the market demand for plastic packaging in Asia-Pacific, North America, and Europe and identified the commonly used plastic food packaging products. We found that food containers exposed to high-temperature released more than 10 million microplastics per mL in water. Recycled plastic food packaging was demonstrated to continuously leach micro- and nanoplastics. In vitro cell engulfing experiments revealed that both micro- and nanoplastic leachates are readily taken up by murine macrophages without any preconditioning, and that short-term microplastic exposure may induce inflammation while exposure to nanoplastic substantially suppressed the lysosomal activities of macrophages. We demonstrated that the ingestion of micro- and nanoplastics released from food containers can exert differential negative effects on macrophage activities, proving that the explosive growth in the use of plastic packaging can poses significant health risks to consumers.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Food Packaging , Humans , Lysosomes , Macrophages , Mice , Microplastics/toxicity , Pandemics , Plastics/analysis , Plastics/toxicity , Water Pollutants, Chemical/analysis
7.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580689

ABSTRACT

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple/drug effects , Glucans/biosynthesis , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antifungal Agents , COVID-19 , Chitin/pharmacology , Chitosan/chemistry , Drug Resistance, Multiple/physiology , Food Packaging , Glucans/metabolism , Glucans/pharmacology , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nisin/pharmacology , Polymers/chemistry , SARS-CoV-2
8.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1572494

ABSTRACT

Low density polyethylene (LDPE) films covered with active coatings containing mixtures of rosemary, raspberry, and pomegranate CO2 extracts were found to be active against selected bacterial strains that may extend the shelf life of food products. The coatings also offer antiviral activity, due to their influence on the activity of Φ6 bacteriophage, selected as a surrogate for SARS-CoV-2 particles. The mixture of these extracts could be incorporated into a polymer matrix to obtain a foil with antibacterial and antiviral properties. The initial goal of this work was to obtain active LDPE films containing a mixture of CO2 extracts of the aforementioned plants, incorporated into an LDPE matrix via an extrusion process. The second aim of this study was to demonstrate the antibacterial properties of the active films against Gram-positive and Gram-negative bacteria, and to determine the antiviral effect of the modified material on Φ6 bacteriophage. In addition, an analysis was made on the influence of the active mixture on the polymer physicochemical features, e.g., mechanical and thermal properties, as well as its color and transparency. The results of this research indicated that the LDPE film containing a mixture of raspberry, rosemary, and pomegranate CO2 extracts incorporated into an LDPE matrix inhibited the growth of Staphylococcus aureus. This film was also found to be active against Bacillus subtilis. This modified film did not inhibit the growth of Escherichia coli and Pseudomonas syringae cells; however, their number decreased significantly. The LDPE active film was also found to be active against Φ6 particles, meaning that the film had antiviral properties. The incorporation of the mixture of CO2 extracts into the polymer matrix affected its mechanical properties. It was observed that parameters describing mechanical properties decreased, although did not affect the transition of LDPE significantly. Additionally, the modified film exhibited barrier properties towards UV radiation. Modified PE/CO2 extracts films could be applied as a functional food packaging material with antibacterial and antiviral properties.


Subject(s)
Food Packaging/methods , Plant Extracts/pharmacology , Polyethylene/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bacteriophage phi 6/drug effects , Biofilms , Chitosan/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Plant Extracts/chemistry , Polyethylene/pharmacology , Polymers/chemistry , Pomegranate , Rosmarinus/chemistry , Rubus , SARS-CoV-2/drug effects
10.
Eur Rev Med Pharmacol Sci ; 25(20): 6378-6385, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1503069

ABSTRACT

OBJECTIVE: The outbreak of SARS-CoV-2 in 2020 has become the world's largest public health event, causing global attention and concern. Despite national efforts to control this emerging infectious disease, it still cannot be contained. China, which reported the disease early, was able to control the outbreak quickly, but there is the problem of imported infections abroad. This review aims to summarize SARS-CoV-2 detected on the outer packaging of imported cold chain food and lead to the transmission of novel coronavirus. MATERIALS AND METHODS: We reviewed information on SARS-COV-2 detected on the outer packaging of imported cold chain food and relevant literature.  We searched the following databases: PubMed, Web of Science, EMBASE and CNKI. search terms were "2019 nCoV", "SARS-CoV-2", "COVID-19", "cold-chain", "item surface", "spread", "people". RESULTS: We found that SARS-CoV-2 survives on the surface of cold-chain food for a long period of time and these active viruses can be transmitted to humans. CONCLUSIONS: We believe that while strictly preventing and controlling the importation of infected patients, we should strengthen the management of imported cold-chain food and its workers to prevent the transmission of SARS-CoV-2 to humans on the surface of cold-chain food objects.


Subject(s)
Food Packaging , Food Preservation , Refrigeration , SARS-CoV-2/isolation & purification , China , Humans , Surface Properties
12.
Compr Rev Food Sci Food Saf ; 20(5): 4881-4905, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345884

ABSTRACT

The development of biodegradable packaging, based on agro-industrial plant products and by-products, can transform waste into products with high added value and reduce the use of conventional nonrenewable packaging. Green-based active packaging has a variety of compounds such as antimicrobials, antioxidants, aromatics, among others. These compounds interact with packaged products to improve food quality and safety and favor the migration of bioactive compounds from the polymeric matrix to food. The interest in the potential hygienic-sanitary benefit of these packages has been intensified during the COVID-19 pandemic, which made the population more aware of the relevant role of packaging for protection and conservation of food. It is estimated that the pandemic scenario expanded food packaging market due to shift in eating habits and an increase in online purchases. The triad health, sustainability, and circular economy is a trend in the development of packaging. It is necessary to minimize the consumption of natural resources, reduce the use of energy, avoid the generation of waste, and emphasize the creation of social and environmental values. These ideas underpin the transition from the emphasis on the more subjective discourse to the emphasis on the more practical method of thinking about the logic of production and use of sustainable packaging. Presently, we briefly review some trends and economic issues related to biodegradable materials for food packaging; the development and application of bio-based active films; some opportunities beyond COVID-19 for food packaging segment; and perspectives in circular economy.


Subject(s)
COVID-19/epidemiology , Food Packaging , Food Safety , Recycling , Conservation of Natural Resources/methods , Food Packaging/economics , Food Packaging/methods , Food Safety/methods , Humans , Recycling/methods
13.
Front Public Health ; 9: 650493, 2021.
Article in English | MEDLINE | ID: covidwho-1259406

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a highly infectious virus that is transmitted primarily through droplets or by coming in close contact with an infected person. In 2020, there was a global outbreak of COVID-19, resulting in an unprecedented global burden of disease, health care costs, and had a significant economic impact. Recently, SARS-CoV-2 was detected on the outer packaging of imported cold chain items in China and has led to virus transmission events, causing great concern. This paper analyses the factors of SARS-CoV-2 survival and transmission in different places and environments, especially the characteristics of low temperatures and object surfaces. It was found that SARS-CoV-2 could survive on surfaces of cold and moist objects in the cold chain for more than 3 weeks, potentially causing COVID-19 transmission. We believe that the low-temperature environment in winter may accelerate the spread of the outbreak and new outbreaks may occur. Overall, SARS-CoV-2 transmission that is susceptible to low winter temperatures is critical for predicting winter pandemics, allowing for the appropriate action to be taken in advance.


Subject(s)
COVID-19 , SARS-CoV-2 , China/epidemiology , Disease Outbreaks , Food Packaging , Humans , Refrigeration
14.
Molecules ; 26(9)2021 May 03.
Article in English | MEDLINE | ID: covidwho-1238921

ABSTRACT

Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.


Subject(s)
Chitosan/chemistry , Cosmeceuticals/chemistry , Food Packaging , Textiles , Amines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crystallization , Edible Films , Humans , Nanofibers/chemistry , Nanoparticles/chemistry , Polymers , Regeneration , Skin/pathology , Skin, Artificial , Solubility , Tissue Engineering , Wound Healing
15.
Int J Environ Res Public Health ; 18(9)2021 04 29.
Article in English | MEDLINE | ID: covidwho-1231469

ABSTRACT

There is no standardized or validated definition or measure of "child-appeal" used in food and beverage marketing policy or research, which can result in heterogeneous outcomes. Therefore, this pilot study aimed to develop and validate the child-appealing packaging (CAP) coding tool, which measures the presence, type, and power of child-appealing marketing on food packaging based on the marketing techniques displayed. Children (n = 15) participated in a mixed-methods validation study comprising a binary classification (child-appealing packaging? Yes/No) and ranking (order of preference/marketing power) activity using mock breakfast cereal packages (quantitative) and focus group discussions (qualitative). The percent agreement, Cohen's Kappa statistic, Spearman's Rank correlation, and cross-classification analyses tested the agreement between children's and the CAP tool's evaluation of packages' child-appeal and marketing power (criterion validity) and the content analysis tested the relevance of the CAP marketing techniques (content validity). There was an 80% agreement, and "moderate" pairwise agreement (κ [95% CI]: 0.54 [0.35, 0.73]) between children/CAP binary classifications and "strong" correlation (rs [95% CI]: 0.78 [0.63, 0.89]) between children/CAP rankings of packages, with 71.1% of packages ranked in the exact agreement. The marketing techniques included in the CAP tool corresponded to those children found pertinent. Pilot results suggest the criterion/content validity of the CAP tool for measuring child-appealing marketing on packaging in accordance with children's preferences.


Subject(s)
Food , Marketing , Beverages , Child , Food Packaging , Humans , Pilot Projects
16.
Food Chem ; 359: 129871, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1193317

ABSTRACT

There has been keen interest in developing biodegradable food packaging materials using polysaccharides. Plant polyphenols are natural antioxidants with many health effects. Different types of plant extracts rich in polyphenols have been formulated into polysaccharide based films and coatings for food packaging. The packaging increases the shelf life of food products by decreasing the quality loss due to oxidation and microbiological growth. The release of polyphenols from the films is modulated. Polysaccharide films incorporated with certain types of polyphenols can be used to indicate the freshness of animal based products. To formulate films with desirable mechanical and barrier properties, addition levels and types of plant extracts, plasticisers and composite polysaccharide materials used should be optimized. The potential of polysaccharide based films with added polyphenols to stop the SARS-CoV-2 transmission through food supply chain is discussed. Polysaccharide based films fortified with polyphenol extracts are multifunctional with potential for active and intelligent packaging.


Subject(s)
Antioxidants , Food Packaging , Polyphenols/chemistry , Polysaccharides/chemistry , Oxidation-Reduction , Plant Extracts/chemistry
18.
Food Environ Virol ; 12(4): 361-366, 2020 12.
Article in English | MEDLINE | ID: covidwho-871571

ABSTRACT

The global SARS-CoV-2 pandemic dictates that anti-contagion strategies should become matters of essential routine in everyday life. Fomite transference is one of the routes of transmission that has been considered for this virus. However, the risks associated with contaminated surfaces of food packaging kept in refrigerators have not yet been adequately assessed. In this study, a surrogate virus, Alphacoronavirus 1, was used to investigate the persistence of coronavirus dried on a plastic carrier at 4 °C. Techniques of wet wiping, with or without disinfectant saturation, were employed to evaluate their effectiveness in the elimination of the virus. If not wiped, the loss of infectivity of the virus on plastic surfaces was, on average, 0.93 log10 (i.e. 83%) per day of storage at 4 °C. Wiping with water-saturated material reduced the initial virus titre on the plastic carrier by 2.4 log10 (99.6%); the same results were achieved through wiping with bactericidal wipes containing ethanol. Wipes saturated with a combination of disinfectant agents (didecyl-dimethyl-ammonium chloride, hydrogen peroxide) decreased the virus titre still more efficiently, by 3.8 log10 (99.98%) and also significantly prevented further transfer of the virus to a secondary surface through wiping. Thus SARS-CoV-2 transmission potential via contaminated plastic packaging and food may be efficiently eliminated by wet-wiping, especially when wipes saturated with specific disinfectants are used.


Subject(s)
Coronavirus Infections/prevention & control , Disinfection/methods , Fomites/virology , Food Packaging , Food Safety , Pandemics/prevention & control , Plastics , Pneumonia, Viral/prevention & control , Refrigeration , Anti-Bacterial Agents , Betacoronavirus , COVID-19 , Coronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disinfectants , Ethanol , Food Storage/methods , Humans , Hydrogen Peroxide , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Quaternary Ammonium Compounds , SARS-CoV-2 , Water
SELECTION OF CITATIONS
SEARCH DETAIL